| extension | φ:Q→Aut N | d | ρ | Label | ID |
| C22.1(C2×Q16) = C2×C8.4Q8 | φ: C2×Q16/C2×C8 → C2 ⊆ Aut C22 | 64 | | C2^2.1(C2xQ16) | 128,892 |
| C22.2(C2×Q16) = M5(2).1C4 | φ: C2×Q16/C2×C8 → C2 ⊆ Aut C22 | 32 | 4 | C2^2.2(C2xQ16) | 128,893 |
| C22.3(C2×Q16) = C42.367D4 | φ: C2×Q16/C2×C8 → C2 ⊆ Aut C22 | 64 | | C2^2.3(C2xQ16) | 128,1902 |
| C22.4(C2×Q16) = C42.297D4 | φ: C2×Q16/C2×C8 → C2 ⊆ Aut C22 | 64 | | C2^2.4(C2xQ16) | 128,1981 |
| C22.5(C2×Q16) = D4⋊5Q16 | φ: C2×Q16/Q16 → C2 ⊆ Aut C22 | 64 | | C2^2.5(C2xQ16) | 128,2031 |
| C22.6(C2×Q16) = D4⋊6Q16 | φ: C2×Q16/Q16 → C2 ⊆ Aut C22 | 64 | | C2^2.6(C2xQ16) | 128,2070 |
| C22.7(C2×Q16) = C2×C23.31D4 | φ: C2×Q16/C2×Q8 → C2 ⊆ Aut C22 | 32 | | C2^2.7(C2xQ16) | 128,231 |
| C22.8(C2×Q16) = C42.404D4 | φ: C2×Q16/C2×Q8 → C2 ⊆ Aut C22 | 32 | | C2^2.8(C2xQ16) | 128,235 |
| C22.9(C2×Q16) = C42.62D4 | φ: C2×Q16/C2×Q8 → C2 ⊆ Aut C22 | 32 | | C2^2.9(C2xQ16) | 128,250 |
| C22.10(C2×Q16) = C24.61D4 | φ: C2×Q16/C2×Q8 → C2 ⊆ Aut C22 | 32 | | C2^2.10(C2xQ16) | 128,252 |
| C22.11(C2×Q16) = C23⋊Q16 | φ: C2×Q16/C2×Q8 → C2 ⊆ Aut C22 | 32 | | C2^2.11(C2xQ16) | 128,334 |
| C22.12(C2×Q16) = (C2×C4)⋊Q16 | φ: C2×Q16/C2×Q8 → C2 ⊆ Aut C22 | 32 | | C2^2.12(C2xQ16) | 128,337 |
| C22.13(C2×Q16) = C24.17D4 | φ: C2×Q16/C2×Q8 → C2 ⊆ Aut C22 | 32 | | C2^2.13(C2xQ16) | 128,346 |
| C22.14(C2×Q16) = C4⋊C4.20D4 | φ: C2×Q16/C2×Q8 → C2 ⊆ Aut C22 | 32 | | C2^2.14(C2xQ16) | 128,349 |
| C22.15(C2×Q16) = C2×C23.48D4 | φ: C2×Q16/C2×Q8 → C2 ⊆ Aut C22 | 64 | | C2^2.15(C2xQ16) | 128,1822 |
| C22.16(C2×Q16) = C42.224D4 | φ: C2×Q16/C2×Q8 → C2 ⊆ Aut C22 | 64 | | C2^2.16(C2xQ16) | 128,1836 |
| C22.17(C2×Q16) = C23⋊3Q16 | φ: C2×Q16/C2×Q8 → C2 ⊆ Aut C22 | 32 | | C2^2.17(C2xQ16) | 128,1921 |
| C22.18(C2×Q16) = C42.267D4 | φ: C2×Q16/C2×Q8 → C2 ⊆ Aut C22 | 64 | | C2^2.18(C2xQ16) | 128,1941 |
| C22.19(C2×Q16) = C42.282D4 | φ: C2×Q16/C2×Q8 → C2 ⊆ Aut C22 | 64 | | C2^2.19(C2xQ16) | 128,1962 |
| C22.20(C2×Q16) = C2×C22.4Q16 | central extension (φ=1) | 128 | | C2^2.20(C2xQ16) | 128,466 |
| C22.21(C2×Q16) = C4×Q8⋊C4 | central extension (φ=1) | 128 | | C2^2.21(C2xQ16) | 128,493 |
| C22.22(C2×Q16) = C4×C2.D8 | central extension (φ=1) | 128 | | C2^2.22(C2xQ16) | 128,507 |
| C22.23(C2×Q16) = C24.155D4 | central extension (φ=1) | 64 | | C2^2.23(C2xQ16) | 128,519 |
| C22.24(C2×Q16) = C42.99D4 | central extension (φ=1) | 128 | | C2^2.24(C2xQ16) | 128,535 |
| C22.25(C2×Q16) = C23.22D8 | central extension (φ=1) | 64 | | C2^2.25(C2xQ16) | 128,540 |
| C22.26(C2×Q16) = C24.157D4 | central extension (φ=1) | 64 | | C2^2.26(C2xQ16) | 128,556 |
| C22.27(C2×Q16) = C42.55Q8 | central extension (φ=1) | 128 | | C2^2.27(C2xQ16) | 128,566 |
| C22.28(C2×Q16) = C42.59Q8 | central extension (φ=1) | 128 | | C2^2.28(C2xQ16) | 128,577 |
| C22.29(C2×Q16) = C23.37D8 | central extension (φ=1) | 64 | | C2^2.29(C2xQ16) | 128,584 |
| C22.30(C2×Q16) = Q8⋊(C4⋊C4) | central extension (φ=1) | 128 | | C2^2.30(C2xQ16) | 128,595 |
| C22.31(C2×Q16) = C24.160D4 | central extension (φ=1) | 64 | | C2^2.31(C2xQ16) | 128,604 |
| C22.32(C2×Q16) = (C2×C4)⋊9Q16 | central extension (φ=1) | 128 | | C2^2.32(C2xQ16) | 128,610 |
| C22.33(C2×Q16) = C24.135D4 | central extension (φ=1) | 64 | | C2^2.33(C2xQ16) | 128,624 |
| C22.34(C2×Q16) = C2.D8⋊5C4 | central extension (φ=1) | 128 | | C2^2.34(C2xQ16) | 128,653 |
| C22.35(C2×Q16) = C2.(C4×Q16) | central extension (φ=1) | 128 | | C2^2.35(C2xQ16) | 128,660 |
| C22.36(C2×Q16) = C2.(C8⋊8D4) | central extension (φ=1) | 128 | | C2^2.36(C2xQ16) | 128,665 |
| C22.37(C2×Q16) = C8⋊5(C4⋊C4) | central extension (φ=1) | 128 | | C2^2.37(C2xQ16) | 128,674 |
| C22.38(C2×Q16) = C42.29Q8 | central extension (φ=1) | 128 | | C2^2.38(C2xQ16) | 128,679 |
| C22.39(C2×Q16) = C42.431D4 | central extension (φ=1) | 128 | | C2^2.39(C2xQ16) | 128,688 |
| C22.40(C2×Q16) = (C2×C4)⋊6Q16 | central extension (φ=1) | 128 | | C2^2.40(C2xQ16) | 128,701 |
| C22.41(C2×Q16) = C42.117D4 | central extension (φ=1) | 128 | | C2^2.41(C2xQ16) | 128,713 |
| C22.42(C2×Q16) = C42.121D4 | central extension (φ=1) | 128 | | C2^2.42(C2xQ16) | 128,719 |
| C22.43(C2×Q16) = C42.436D4 | central extension (φ=1) | 128 | | C2^2.43(C2xQ16) | 128,722 |
| C22.44(C2×Q16) = C22×Q8⋊C4 | central extension (φ=1) | 128 | | C2^2.44(C2xQ16) | 128,1623 |
| C22.45(C2×Q16) = C22×C2.D8 | central extension (φ=1) | 128 | | C2^2.45(C2xQ16) | 128,1640 |
| C22.46(C2×Q16) = C2×C4×Q16 | central extension (φ=1) | 128 | | C2^2.46(C2xQ16) | 128,1670 |
| C22.47(C2×Q16) = C2×C4⋊2Q16 | central extension (φ=1) | 128 | | C2^2.47(C2xQ16) | 128,1765 |
| C22.48(C2×Q16) = C2×C4.Q16 | central extension (φ=1) | 128 | | C2^2.48(C2xQ16) | 128,1806 |
| C22.49(C2×Q16) = C2×C4.SD16 | central extension (φ=1) | 128 | | C2^2.49(C2xQ16) | 128,1861 |
| C22.50(C2×Q16) = C2×C4⋊Q16 | central extension (φ=1) | 128 | | C2^2.50(C2xQ16) | 128,1877 |
| C22.51(C2×Q16) = C2×C8⋊2Q8 | central extension (φ=1) | 128 | | C2^2.51(C2xQ16) | 128,1891 |
| C22.52(C2×Q16) = C23⋊2Q16 | central stem extension (φ=1) | 64 | | C2^2.52(C2xQ16) | 128,733 |
| C22.53(C2×Q16) = (C2×C4)⋊2Q16 | central stem extension (φ=1) | 128 | | C2^2.53(C2xQ16) | 128,748 |
| C22.54(C2×Q16) = (C2×Q8)⋊Q8 | central stem extension (φ=1) | 128 | | C2^2.54(C2xQ16) | 128,756 |
| C22.55(C2×Q16) = C24.86D4 | central stem extension (φ=1) | 64 | | C2^2.55(C2xQ16) | 128,768 |
| C22.56(C2×Q16) = C4⋊C4.95D4 | central stem extension (φ=1) | 128 | | C2^2.56(C2xQ16) | 128,775 |
| C22.57(C2×Q16) = (C2×C4)⋊3Q16 | central stem extension (φ=1) | 128 | | C2^2.57(C2xQ16) | 128,788 |
| C22.58(C2×Q16) = C4⋊C4⋊Q8 | central stem extension (φ=1) | 128 | | C2^2.58(C2xQ16) | 128,789 |
| C22.59(C2×Q16) = (C2×C8).52D4 | central stem extension (φ=1) | 128 | | C2^2.59(C2xQ16) | 128,800 |
| C22.60(C2×Q16) = (C2×C4).19Q16 | central stem extension (φ=1) | 128 | | C2^2.60(C2xQ16) | 128,804 |
| C22.61(C2×Q16) = C24.88D4 | central stem extension (φ=1) | 64 | | C2^2.61(C2xQ16) | 128,808 |
| C22.62(C2×Q16) = (C2×C8).1Q8 | central stem extension (φ=1) | 128 | | C2^2.62(C2xQ16) | 128,815 |
| C22.63(C2×Q16) = (C2×C4).21Q16 | central stem extension (φ=1) | 128 | | C2^2.63(C2xQ16) | 128,819 |
| C22.64(C2×Q16) = (C2×C8).60D4 | central stem extension (φ=1) | 128 | | C2^2.64(C2xQ16) | 128,827 |
| C22.65(C2×Q16) = (C2×C4).23Q16 | central stem extension (φ=1) | 128 | | C2^2.65(C2xQ16) | 128,832 |